If it's not what You are looking for type in the equation solver your own equation and let us solve it.
49x^2-21+2=0
We add all the numbers together, and all the variables
49x^2-19=0
a = 49; b = 0; c = -19;
Δ = b2-4ac
Δ = 02-4·49·(-19)
Δ = 3724
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3724}=\sqrt{196*19}=\sqrt{196}*\sqrt{19}=14\sqrt{19}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-14\sqrt{19}}{2*49}=\frac{0-14\sqrt{19}}{98} =-\frac{14\sqrt{19}}{98} =-\frac{\sqrt{19}}{7} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+14\sqrt{19}}{2*49}=\frac{0+14\sqrt{19}}{98} =\frac{14\sqrt{19}}{98} =\frac{\sqrt{19}}{7} $
| 7x+10=2(180) | | x=2,-2,1 | | s-$10=$20.65 | | 2(x+3x/4)=420 | | 6-r=6-r | | 625-3x-2=252x-1 | | 6-3n=6-3n-1 | | 16k2-4=0 | | 43m+1=164 | | 2(5y+1)=16 | | 1/(p-3)-3/(2p+6)=(15-p)/(2(p-3)(p+3)) | | 6-2k=63k-3 | | -3(3c-6)=-9. | | 6−9x+3x=15 | | 4x-5;x=3 | | 4(2x+5)-(x+1)=0 | | (2x+5)-(x+1)=0 | | 27-5x2-4x=2x+23-7x2 | | 5(x+8)-7=3(4x+6) | | 1.5x+44=10 | | 9(x−3=)45 | | 216+(34-x)=224 | | 16=(x^2-9) | | x^2-3x+5=23 | | 23=x^2-3x+5 | | 218=3-x | | -u+53=259 | | 290-u=186 | | 155=-w+201 | | (-6+7x)+55+75=180 | | 16=x/3+11 | | 5x+8-9x=0 |